Induction of Resistance to Larvae Crocidolomia pavonana F. (Lepidoptera: Crambidae) using Rhizobacteria to the Cabbage

Authors

  • Indri Yanil Vajri Faculty of Agriculture, Medan Area University, Medan, North Sumatera, Indonesia
  • Trizelia Faculty of Agriculture, Unand University, Padang, West Sumatera, Indonesia
  • Haliatur Rahma Faculty of Agriculture, Unand University, Padang, West Sumatera, Indonesia

DOI:

https://doi.org/10.25077/aijent.2.1.15-23.2024

Keywords:

Biological control, crocidolomia pavonana, induction of resistance, patogenecity, rhizobacteria

Abstract

Crocidolomia pavonana is a significant pest on cabbage that reduces the quality and quantity of cabbage. Utilizing microorganisms such as rhizobacteria is an alternative environmentally friendly control that can potentially suppress the development of this pest. The study aimed to obtain rhizobacteria isolates capable of colonizing cabbage tissue and inducing plant resistance to C. pavonana larvae. The research was conducted at the Biological Control Laboratory and Greenhouse, Faculty of Agriculture, Universitas Andalas, Padang. The study used a Completely Randomized Design (CRD) with ten treatments and five replications. The treatment consisted of rhizobacteria isolates, including Bacillus thuringiensis, Bacillus subtilis, Serratia marcescens, Stenotrophomonas maltophilia, as well as a negative control (aquadest sterile) and a positive control (Cypermethrin insecticide). The test was carried out by soaking the seeds in a suspension containing rhizobacteria with a population density of 10⁸ cells/ml. The variables observed were larval mortality, pupa and imago formation percentage, and increased salicylic acid production. The data were analyzed using variance and continued with the LSD further test at the 5% level. The results showed that all rhizobacteria isolates colonized into cabbage plant tissue could kill C. pavonana larvae and inhibit these insects' biological development. B. thuringiensis KJKB7.3 showed better results with the highest mortality value (62.67%). Soaking cabbage seeds with rhizobacteria can increase the content of salicylic acid. Based on this research, the rhizobacteria used in the research have the potential to be developed as biological agents to control C. pavonana.

Downloads

Download data is not yet available.

References

Abdel-Aal, A. E., El-Sheikh, T. A., & Farag, A. M. (2009). Effectiveness of insect growth regulators on the cotton leafworm, S. littoralis (Boisd.) population on egyptian cotton in menofia governorate. Egypt, J. Agri. Res., 87(2): 177-190.

Adriyani, R. (2006). Environmental pollution control efforts due to the use of agricultural pesticides. Journal of Environmental Health. 3(1); 95-106.

Azizoglu, U., Jouzani, G. S., Yilmaz, N., Baz, E., Ozkok, D. (2020). Genetically modified entomopathogenic bacteria, recent developments, benefits, and impacts: a review. Sci. Total Environ. 734, 139169. DOI: https://doi.org/10.1016/j.scitotenv.2020.139169

Disi, J., Simmons, J., Zebelo, S. (2019). Plant growth promoting rhizobacteria induced defense against insect herbivores. Field crops: Sustainable management by PGPR. Springer, Cham, pp. 385–410. DOI: https://doi.org/10.1007/978-3-030-30926-8_14

Elsayed, I. A and Edress, N. O. (2016). Combined effects of Bacillus thuringiensis and Serratia marcescens on cotton leaf worm, Spodoptera littoralis. Journal of American Science. 12. 28-31.

Gnanamanickam, S. S. (2006). Plant-associated bacteria. Springer. The Netherlands. DOI: https://doi.org/10.1007/1-4020-4538-7

Grimont, F., Grimont, P. A. D., et al., (2006). The genus serratia. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H., Stackebrandt, E. (Eds.), The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed, vol. 6. Springer, New York, pp. 219–244. DOI: https://doi.org/10.1007/0-387-30746-X_11

Grupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K., and Singh, V. (2015). Plant Growth Promoting Rhizobacteria (PGPR): Current and future prospect for development of sustainable agriculture. J Microb Biochem Technol. 7: 096-102.

Gyaneshwar, P., James, E. K., Mathan, N., Reddy, P. M., Reinhold-Hurek, B., Ladha J. K. (2001). Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J. Bacteriol. 183, 2634–2645. DOI: https://doi.org/10.1128/JB.183.8.2634-2645.2001

Harun-Or-Rashid, M., Kim, H. J., Yeom, S. I., Yu, H. A., Manir, M. M., Moon, S. S., Chung, Y. R. (2018). Bacillus velezensis YC7010 enhances plant defenses against brown planthopper through transcriptomic and metabolic changes in rice. Front. Plant Sci. 9, 1904. DOI: https://doi.org/10.3389/fpls.2018.01904

Heil. M. (2014). Herbivore-Induced plan volatiles: targets, perception and unanswered questions. New Phytol. 204, 297–306. DOI: https://doi.org/10.1111/nph.12977

Jaber, L. R., Araj, S. E., 2018. Interactions among endophytic fungal entomopathogens (Ascomycota: Hypocreales), the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the aphid endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biol. Control 116, 53–61. DOI: https://doi.org/10.1016/j.biocontrol.2017.04.005

Kalshoven, L. G. E. (1981). The pests of crops in Indonesia. Van Der Laan PA. Translated Jakarta: Ichtiar Baru-Van Hoeve.

Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 132, 1–41. DOI: https://doi.org/10.1016/j.jip.2015.07.009

Leroy, P., Sabri, A., Verheggen, F. J., Francis, F., Thonart, P., and Haubruge, E. (2011). The semiochemically mediated interactions between bacteria and insects, Department of Fungtional and Evolutionary Entomology, University of Liege, Gembloux Agro-BioTech. DOI: https://doi.org/10.1007/s00049-011-0074-6

Li, H., Soares, M. A., Soares, M. S., Bergen, M., and White, Jr. (2015). Endophytic bacterium, Bacillus amyloliquefaciens, enhances ornamental hosta resistance to diseases and insect pests. Journal of Plant Interactions. 10:1. 224-229. DOI: https://doi.org/10.1080/17429145.2015.1056261

Niu, H., Yang, S., Zhichun, Z., Dongxiao, Z., Na, W., Lihua, W., Huifang, G. (2022). The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiological Research.https://doi.org/10.1016/j.micres.2021.126956. DOI: https://doi.org/10.1016/j.micres.2021.126956

Pieterse, C. M. J., Lenon, R. A., Van der Ent, S and Van Wees. (2009). Networking by smallmolecule hormones in plant immunity. Nature Chemical Biology. 5:305±316. DOI: https://doi.org/10.1038/nchembio.164

Praca, L., Gomes, A. C. M., Cabral, G., Martins, E., Sujii, R., and Monnerat, R. G. (2012). Endophytic colonization by Brazilian Strains of Bacillus thuringiensis on cabbage seedlings grown in vitro. Bt Research . Vol.3. No.3 11-19.

Qi, G., Zhang, X., Zhao, X. (2013). Endophytic Bacillus subtilis WH2 containing Pinellia ternata agglutinin showed insecticidal Activity against whitebacked planthopper Sogatella furcifera. BioControl 58, 233–246. DOI: https://doi.org/10.1007/s10526-012-9485-8

Qin, X., Zhao, X., Huang, S., Deng, J., Li, X., Luo, Z., Zhang, Y. (2021). Pest management via endophytic colonization of tobacco seedlings by the insect fungal pathogen Beauveria bassiana. Pest Manag. Sci. 77, 2007–2018. DOI: https://doi.org/10.1002/ps.6229

Rashid, M. H., Chung, Y. R. (2017). Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front. Plant Sci. 8, 1816. DOI: https://doi.org/10.3389/fpls.2017.01816

Rasmussen, J. B., Hammerschmidt, R., and Zook, M. N. (1991). Systemic induction of salicylic-acid accumulation in cucumber after inoculation with Pseudomonas syringae pv.syringae. Plant Physiol. 97 (4): 1342-1347. DOI: https://doi.org/10.1104/pp.97.4.1342

Regaiolo, A., Dominelli, N., Andresen, K., Heermann, R. (2020). The biocontrol agent and insect pathogen Photorhabdus luminescens interacts with plant roots. Appl. Environ. Microbiol. 86, e00891–20. DOI: https://doi.org/10.1128/AEM.00891-20

Rodriguez-Saona, C., Chalmers, J. A., Raj, S., Thaler, J. S. (2010). Induced plant responses to multiple damagers: Differential effects on an herbivore and its parasitoid, Oecologia 143, 566–577. DOI: https://doi.org/10.1007/s00442-005-0006-7

Scoonhoven, L., Loon, V., and Dicke, M. (2005). Insect plant biology, Oxford University Press, London. DOI: https://doi.org/10.1093/oso/9780198525943.001.0001

Silverman, P., Seskar, M., Kanter, D., Schweizer, P., and Metraux, J. (1995). Salicylic acid in rice (biosynthesis, conjugation, and possible role). Plant Physiol. 108: 633-639. DOI: https://doi.org/10.1104/pp.108.2.633

Sorokan, A. V., Benkovskaya, G. V., Blagova, D. K., Maksimova, T. I., Maksimov, I. V. (2018). Defense responses and changes in symbiotic gut microflora in the colorado potato beetle Leptinotarsa decemlineata under the effect of endophytic bacteria from the genus Bacillus. J. Evol. Biochem. Phys. 54, 300–307. DOI: https://doi.org/10.1134/S0022093018040063

Tanada, Y and Kaya, H. K. (1993). Insect pathology. Academic Press. San Diego. California.

Trizelia. (1994). Infection with Bacillus thuringiensis Berliner on the larvae of Heliothis armigera Hubner (Lepidoptera: Noctuidae) and its effect on soybean pod consumption [Thesis]. Graduate program. Institut Pertanian Bogor.

Vallad, G. E., & Goodman, R. M. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. J. Crop Science. 44: 1920-1934. DOI: https://doi.org/10.2135/cropsci2004.1920

Wari, D., Kabir, M. A., Mujiono, K., Hojo, Y., Shinya, T., Tani, A., Nakatani, H., Galis, I. (2019). Honeydew-Associated microbes elicit defense responses against brown planthopper in rice. J. Exp. Bot. 70, 1683–1696. DOI: https://doi.org/10.1093/jxb/erz041

Wei, G., Kloepper, J. W., Tuzun, S. (1996). Induced systemic resistance to cucumber diseases and increased plant growth by Plant Growth-Promoting Rhizobacteria under field conditions. Phytopathol. 86, 221–224. DOI: https://doi.org/10.1094/Phyto-86-221

White, J. F., Kingsley, K. L., Zhang, Q., Verma, R., Obi, N., Dvinskikh, S., Elmore, M. T., Verma, S. K., Gond, S. K., Kowalski, K. P. (2019). Endophytic microbes and their potential applications in crop management. Pest Manag. Sci. 75, 2558–2565. DOI: https://doi.org/10.1002/ps.5527

Wu, Q., Zhang, G., Chen, Y., Yu, J., Zhou, Y., Shu, Z., Ge, L. (2021). Seed dressing with Triflumezopyrim controls brown planthopper populations by inhibiting feeding behavior, fecundity and enhancing rice plant resistance. Pest Manag. Sci. 77, 2870–2886. DOI: https://doi.org/10.1002/ps.6323

Zehnder, G. W., Kloepper, C., Yao., and Wei, G. (1997). Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by Plant Growth-Promoting Rhizobacteria. Journal of Economic Entomology. 90 (2): 391-396. DOI: https://doi.org/10.1093/jee/90.2.391

Zulfiana, D., Krishanti, N. P. R. A., Wikantyoso, B., & Zulfitri, A. (2017). Entomopathogenic bacteria as biocontrol agent against Spodoptera litura (F.) larvae. Biology News 16 (1). DOI: https://doi.org/10.14203/beritabiologi.v16i1.2153

Downloads

Published

2024-04-11

How to Cite

Indri Yanil Vajri, Trizelia, & Haliatur Rahma. (2024). Induction of Resistance to Larvae Crocidolomia pavonana F. (Lepidoptera: Crambidae) using Rhizobacteria to the Cabbage. Andalasian International Journal of Entomology, 2(1), 15–23. https://doi.org/10.25077/aijent.2.1.15-23.2024

Issue

Section

Articles