Color Variability of Cosmopolitan Beetles in Mindanao, Philippines

Authors

  • Ernel Bagbag Mindanao State University-Iligan Institute of Technology, Tibanga, Iligan City, Philippines
  • Mark Anthony J. Torres Mindanao State University-Iligan Institute of Technology, Tibanga, Iligan City, Philippines
  • Cesar G. Demayo Mindanao State University-Iligan Institute of Technology, Tibanga, Iligan City, Philippines

DOI:

https://doi.org/10.25077/aijent.2.1.1-7.2024

Keywords:

Digital images, cluster analysis, coleoptera, color variability, evolution

Abstract

Beetles (Insecta: Coleoptera) stands out as one of the most diverse insect groups, showcasing various color variations. These evolved color patterns present a fascinating trait crucial for understanding their evolution. However, studying these patterns poses challenges, given the intricate nature of colors in the natural world. While past researchers have explored beetle color patterns, quantifying colors requires costly equipment and sophisticated software. This paper introduces an alternative approach, utilizing digital images to examine color variability among Coleopterans. Forty-eight specimens from Mindanao, Philippines, were collected and photographed under consistent conditions. Subsequently, the images were calibrated and processed in R software to calculate image distances through cluster analysis. The results reveal that beetle color patterns fall into two categories: a dark color with deeper shades of gray and a moderately bright tone featuring a slight reddish hue with noticeable yellow highlights. Chrysochroa fulminans is the most distinct beetle across Coleopteran species due to its vibrant green coloration. Family-specific examination of color patterns revealed species with distinct color, Anomala flavipennis and A. smaragdina (Scarabaeidae), Otiorhynchus pauxillus (Curculionidae), Uloma culinaris (Tenebrionidae), and Nupserha fricator (Cerambycidae). The study's findings offer valuable insights into the evolution of Coleopterans, mainly their color patterns, serving as a valuable tool for classification.

Downloads

Download data is not yet available.

References

Badejo, O., Skaldina, O., Gilev, A., & Sorvari, J. (2020). Benefits of insect colours: a review from social insect studies. Oecologia, 194, 27-40. https://doi.org/10.1007/s00442-020-04738-1.

Badiane, A., de Lanuza, G. P., Custodio, M., & Carazo, P. (2017). Colour patch size and measurement error using reflectance spectrophotometry. Methods in Ecology and Evolutipm, 8, 1585-1593. https://doi.org/10.1111/204 1-210X.12801.

Bezzerides, A. L., McGraw, K., Parker, R. S., & Husseini, J. (2007). Elytra color as a signal of chemical defense in the Asian ladybird beetle Harmonia axyridis. Behavioral Ecology and Sociobiology, 61, 1401–1408. https://doi.org/10.100 7/s00265-007-0371-9.

Boyle, J., & Start, D. (2019). Plasticity and habitat choice match colour to function in an ambush bug. Functional Ecology, 34, 822-829. https://doi.org/ 10.1111/1365-2435.13528.

Endler, J. A., & Mappes, J. (2017). The current and future state of animal coloration research. Philosophical Transactions of the Royal Society B, 372 (1724). https://doi.org/10.1098/rstb.2016.0352.

Keinath, S., Frisch, J., Müller, J., Mayer, F., & Rödel, M.-O. (2020). Spatio-Temporal Color Differences Between Urban and Rural Populations of a Ground Beetle During the Last 100 Years. Frontiers in Ecology and Evolution, 7. https://doi.org/10.3389/fe vo.2019.00525.

Kendal, D., Hausser, C. E., Garrad, G. E., Jellinek, S., Gilijohann, K. M., & Moore, J. L. (2013). Quantifying Plant Colour and Colour Difference as Perceived by Humans Using Digital Images. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0072 296.

Lawrence, J. F., Slipinski, A., Seago, A., Thayer, M., Newton, A., & Marvaldi, A. (2011). Phylogeny of the Coleoptera based on Morphological Characters of Adults and Larvae. Annales Zoologici, 61(1), 1-217. https://doi.org/10.3161/000345411X576725.

Lenhert, M., Balaban, M., & Emmel, T. C. (2011). A New Method for Quantifying Color of Insects. Florida Entomologist, 94(2), 201-207. https://doi.org/10.165 3/024.094.0212.

Ly, B. K., Dyer, E. B., Feig, J. L., Chien, A. L., & Del Bino, S. (2019). Research Techniques Made Simple: CutaneousColorimetry: A Reliable Technique for ObjectiveSkin Color Measurement. Journal of Investigative Dermatology, 140(1), 3-12. https://doi.org/10.1016/j.jid.2019.11.003.

Martín-Vega, D., & Baz, A. (2013). Variation in the colour of the necrophagous fly, Prochyliza nigrimana (Diptera: Piophilidae): A case of seasonal polymorphism. European Journal of Entomology, 108(2), 231-234. https://doi.org/10.14411/eje. 2011.031.

McKenna, D., Shin, S., Ahrens, D., Balke, M., Beza-Beza, C., Clarke, D. J., . . . Beutel, R. (2019). The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Science, 116(49), 24729-24737. https://doi.org/10.1073/pnas. 1909655116.

R Core Team. (2022). R: A language and environment for statistical computing. Vienna, Austrria: R Foundation for Statistical Computing. https://www.R-project.org/.

Sha’ari, N., & Arumugam, N. (2019). Beetles Diversity (Order: Coleoptera) of R.E.A.C.H. Biodiversity Center, Cameron Highlands, Pahang, Malaysia. Serangga, 24(2), 58-67.

Stanbrook, R. A., Harris, W. E., Wheater, C. P., & Jones, M. (2021). Evidence of phenotypic plasticity along an altitudinal gradient in the dung beetle Onthophagus proteus. PeerJ, 9, e10798. https://doi.org/10.7717/peerj.10798.

Stevens, M., & Merilaita, S. (2008). Animal camouflage: current issues and new perspectives. Philosophical Transactions of the Royal Society B, 364, 423–427. https://doi.org/10.1098/rstb.2008 .0217.

Tan, E. J., Reid, C. A., Symonds, M. R., Jurado-Rivera, J., & Elgar, M. A. (2017). The Role of Life-History and Ecology in the Evolution of Color Patterns in Australian Chrysomeline Beetles. Frontiers in Ecology and Evolution, 5, 140. https://doi/org/10.3389/fevo.2017 .00140.

The GIMP Development Team. (2019). GIMP. https://www.gimp.org.

True, J. R. (2003). Insect melanism: the molecules matter. Trends in Ecology and Evolution, 18(12), 640-647. https://doi.org/10.1016/j.tree.2003.09.006

Van den Berg, C. P., Troscianko, J., Endler, J. A., Marshall, N. J., & Cheney, K. L. (2020). Quantitative Colour Pattern Analysis (QCPA): A Comprehensive framework for the analysis of colour patterns in nature. Methods in Ecology and Evolution, 11, 316-332. https://doi.org/10.1111/2041-210X.13328.

Watanabe, T., Tanigaki, T., Nishi, H., Ushimaru, A., & Takeuchi, T. (2002). A Quantitative Analysis of Geographic Color Variation in Two Geotrupes Dung Beetles. Zoological Science, 351-358. https://doi. org/10.2108/zsj.19.351.

Weller, H. I., & Westneat, M. W. (2019). Quantitative color profiling of digital images with earth mover's distance using the R package colordistance. PeerJ, 7. https://doi.org/10.7717/peerj.6398.

Downloads

Published

2024-04-10

How to Cite

Bagbag, E., Mark Anthony J. Torres, & Cesar G. Demayo. (2024). Color Variability of Cosmopolitan Beetles in Mindanao, Philippines. Andalasian International Journal of Entomology, 2(1), 1–7. https://doi.org/10.25077/aijent.2.1.1-7.2024

Issue

Section

Articles